
Finding and Fixing Bugs in Model Transformations with

Formal Verification: An Experience Report∗

Gehan M.K. Selim
gehan@cs.queensu.ca
School of Computing
Queen’s University

James R. Cordy
cordy@cs.queensu.ca
School of Computing
Queen’s University

Juergen Dingel
dingel@cs.queensu.ca
School of Computing
Queen’s University

Levi Lúcio
levi@cs.mcgill.ca

School of Computer Science
McGill University

Bentley J. Oakes
bentley.oakes@mail.mcgill.ca
School of Computer Science

McGill University

Abstract

We report on the use of a formal verification tool for a graph-based
transformation language in the context of a case study. The tool iden-
tified two bugs in the transformation that had eluded all previous test-
ing efforts. The paper describes what we learned about the analysis
of model transformations and how we intend to use these insights to
improve the verification tool.

1 Introduction

In Model-Driven Development (MDD), model transformations are used to automate MDD tasks such as querying,
model extraction, and code generation [LAD+15]. A model transformation is a program that maps input models
(conforming to a source metamodel) into their corresponding output models (conforming to a target metamodel).
The ability to identify and avoid bugs in model transformations is very beneficial to MDD in general, and to the
successful application of MDD for safety-critical software in particular.

In this paper, we report on our experiences using a tool that we have recently developed for the formal
verification of model transformations [SLC+14, Sel15]. The tool analyzes transformations expressed in a graph-
based transformation language called DSLTrans with respect to pre- and post-condition pairs. We use this tool
for the analysis of an existing model-to-model transformation that transforms state machine models expressed in
the UML profile UMLRT [Sel98], to equivalent models in Kiltera [PD10a], a timed extension of the π-calculus.

The contributions of this experience report are: (1) We summarize observations that are, hopefully, of value
to practitioners developing model transformations and researchers working on quality assurance techniques for
model transformations; some of these observations speak to known problems such as the subtleties and limitations
of testing and the dangers of refactoring, while other observations are more technical and identify, e.g., different
kinds of properties that we found useful. (2) We describe how the case study has influenced our plans for future
work on our DSLTrans verification tool.

Next, we describe the case study (Section 2), DSLTrans, and our property prover (Section 3. Then, we present
the verification results (Section 4), lessons learned (Section 5), and related work (Section 6).

2 The UML-RT-to-Kiltera Model Transformation: Problem Description

Model transformations are used to achieve many tasks in MDD, one of which is facilitating the analysis of models
by translating them into an analyzable language in such a way that analysis results are preserved [LAD+15].

∗This work is supported in part by NSERC, as part of the NECSIS Automotive Partnership with General Motors, IBM Canada
and Malina Software Corp.

UML-RT [Sel98] is a UML profile that has been used for the development of event-driven, soft real-time
systems. It is supported by commercial MDD tools such as IBM RSA-RTE [IBM] and the open-source tool
Papyrus-RT [Fou]. To enable analysis, a translation of UML-RT state machine diagrams and capsule diagrams
into a language called Kiltera was recently developed [PD14].

Kiltera [PD10a] is a language for expressing, simulating, and analyzing systems that are either concurrent or
distributed. Kiltera allows for code to be executed in different, dynamically changing locations, and supports a
notion of time that influences execution behaviour. A Kiltera program consists of processes that communicate
asynchronously over channels. Its formal semantics is based on an timed extension of the π-calculus [PD10b].
As in the π-calculus, channels can be sent as parts of messages which allows for the easy implementation of, e.g.,
(1) call-backs by providing a called process with a “handle” to be used to send computation results back to the
caller, and (2) the dynamic aspects of UML-RT (such as optional and dynamic capsules).

Paen [Pae12] has implemented a transformation of UML-RT state machines into Kiltera process models [PD14]
in ATL. We refer to this transformation as the UML-RT-to-Kiltera model transformation. We now summarize
the relevant parts of the metamodels of this transformation.

2.1 The Source UML-RT metamodel

In UML-RT, a system’s structure is specified as a capsule diagram composed of system components or capsules.
The behavior of these capsules is specified using state machine diagrams (e.g., Fig. 1). We discuss the concepts
of UML-RT metamodel by stating class names (which correspond to UML-RT concepts) in italics, and referring
to examples of these concepts in Fig. 1.

A UML-RT state machine has one or more (hierarchical) States, for example, states ‘n2’ and ‘n3’ in Fig. 1.
States are traversed through Transitions, such as transition ‘t1’ in Fig. 1. Transitions can be sibling transitions
between states in the same hierarchical level, incoming transitions from a state to one of its sub-states, outgoing
transitions from a sub-state to its containing state, or initial transitions from a state’s InitialPoint (e.g., ‘init1’
in Fig.1) to one of its sub-states (classes SIBLING0, IN1, OUT2, and association initialTransition). Transitions
can have Triggers, where each trigger is composed of a Signal received on a Port. For example, transition ‘t1’ in
Fig. 1 is triggered by signal ‘sig1’ on port ‘p1’. A transition crossing state boundaries is broken into segments,
where each segment links EntryPoints (e.g., ‘a1’ in Fig. 1) and/or ExitPoints (e.g., ‘b1’ in Fig. 1).

2.2 The Target Kiltera Metamodel

Next we introduce the concepts of the Kiltera metamodel considered by Posse and Dingel [PD14]. Kiltera in-
cludes five classes of constructs: expressions (class Expr), patterns (class Pattern), guards (Class ListenBranch),
definitions (Class Def), and processes (class Proc). Expressions and patterns can be constants, variables, and
tuples. Expressions also include function calls. Table 1 enumerates a subset of the guards, definitions, and pro-
cesses relevant to this study (including their syntax and their corresponding classes from the Kiltera metamodel).
We discuss the semantics of these Kiltera constructs in the following.

A process definition of the form proc A(x1, . . . , xn) = P defines a process A with parameters xi that are used
in the body of the process P . Thus, the instantiation process A(E1, . . . , En) instantiates a process defined by
Proc A(x1, . . . , xn) = P where the parameters xi are substituted in P by the values of the expressions Ei. The
process done represents a successfully terminated process. A trigger (i.e., a!E) outputs the value of expression E
over channel a. In listener processes (i.e., when{G1 → P1| . . . |Gn → Pn}), Gi is an input guard which takes the
form ai?Ri@yi, where ai is a channel, Ri is a pattern, and yi is a variable. A listener listens to channels ai of
the guards Gi. When a channel ai is triggered with a value matching the pattern Ri of guard Gi, three steps are
carried out: (1) process Pi is executed, (2) variable yi of guard Gi stores the time waited by the listener, and (3)
the alternative guards are ignored. The new process (i.e., new a1, . . . , an in P) creates the channels ai that are
private to process P . Conditionals have the standard semantics. Local definitions (i.e., def{D1; . . . ;Dn}in P)
declare the definitions Di and executes P , where the scope of Di is the entire term. Parallel and sequential
processes represent the parallel and sequential composition of the processes in the term.

2.3 The UML-RT-to-Kiltera Model Transformation Mapping Rules

Due to space limitations, we describe the required mapping informally, using the examples shown in Figs. 1
and 2. The detailed mapping rules between the UML-RT and Kiltera metamodels are described in [PD14].

Fig. 1 shows a state machine with one composite state n2 and Fig. 2 shows the equivalent Kiltera mapping
of state n2. The UML-RT-to-Kiltera transformation, in general, maps (a) any state n to a Kiltera process

Table 1: The names of Kiltera’s constructs, their syntax, and their representative classes

Name Syntax Corresponding class in the Kiltera meta-model
Input Guards a?R@y Class ListenBranch : attributes channel and after and an association to class Pattern represent a, y,

and R in	 a?R@y	
Process Definition proc

A(x1,...,xn)=P
Class ProcDef : attribute name and associations with classes Name and Proc represent A, xi, and P
in proc A(x1,...,xn)=P

Termination Process done Class Null
Trigger Process a!E Class Trigger : attribute channel and association with class Expr represent a and E in a!E
Listener Process When(G1àP1|

...|GnàPn)
Class Listen : associations with classes ListenBranch and Proc represent Gi and Pi in
When(G1àP1|...|Gn àPn)

New Process New a1...an in
P

Class New : associations with classes Name and Proc represent ai and P in New a1...an in P

Conditional Process if E then P1
else P2

Class ConditionSet : associations with classes ConditionBranch and Proc represent the “if/then”
clause and the “else” clause.

Instantiation Process A(E1, ...,En) Class Inst : attribute name and association with class Name represent A and Ei in A(E1, ...,En)
Local Definition
Process

def{D1;...;Dn}
in P

Class LocalDef : associations with classes Def and Proc represent Di and P in def{D1;...;Dn}
in P

Parallel Composition
Process

P1 || P2 Class Par : association with class Proc represent Pi in P1||P2

Sequential
Composition Process

P1;P2 Class Seq : associations with class Proc represent Pi in P1;P2

	

1 proc Sn2 (exit, exack, sh, enp, ...)=

2 def{

3 proc Sn3 (...)=... ; proc Sn4 (...)= ...;

4 proc Bb1 (sh)=

5 sh! || Sn1(...)

6 proc Dispatcher (exit’,exack’,sh’,enp,...)=

7 if enp=”a1” then Sn4(exit’,exack’,sh’,a1,...)

8 else Sn3(exit’, exack’, sh’, init2)

9 proc Handler (exit’, exack’, sh’, ...)=

10 when{

11 exit? //actions to do on exit request

12 |sig1? exit’!;

13 when{exack’? Sn1(…) }

14 |...

15 }

16 } in

17 new exit’,exack’,sh’ in(

18 Dispatcher(...) || Handler(...))

State Machine

 n1 a4

b3 a6

t1: p1.sig1

t2 : p2.sig2 init1 t6

 init2
 n4

a2
a3

 n3

b2 a5

 n2

a1

b1
t3

t4 : p4.sig4

t5

Figure 1: State machine with composite state ‘n2’.

1 proc Sn2 (exit, exack, sh, enp, ...)=

2 def{

3 proc Sn3 (...)=... ; proc Sn4 (...)= ...;

4 proc Bb1 (sh)=

5 sh! || Sn1(...)

6 proc Dispatcher (exit’,exack’,sh’,enp,...)=

7 if enp=”a1” then Sn4(exit’,exack’,sh’,a1,...)

8 else Sn3(exit’, exack’, sh’, init2)

9 proc Handler (exit’, exack’, sh’, ...)=

10 when{

11 exit? //actions to do on exit request

12 |sig1? exit’!;

13 when{exack’? Sn1(…) }

14 |...

15 }

16 } in

17 new exit’,exack’,sh’ in(

18 Dispatcher(...) || Handler(...))

State Machine

 n1 a4

b3 a6

t1: p1.sig1

t2 : p2.sig2 init1 t6

 init2
 n4

a2
a3

 n3

b2 a5

 n2

a1

b1
t3

t4 : p4.sig4

t5

Figure 2: The Kiltera mapping of state ‘n2’ in Fig. 1

definition named Sn, (b) the entering of a state n to an instantiation of Kiltera process Sn, and (c) signals of
transitions’ triggers to Kiltera channels in the output. Thus, the composite state n2 in Fig. 1 is mapped to a
process definition Sn2 (Fig. 2) with some parameters. Sub-states n3 and n4 of state n2 are mapped to nested
process definitions Sn3 and Sn4 of process Sn2 (line 3 of Fig. 2).

To encode transitions with triggers for state n2, process Sn2 has a sub-process Handler (lines 9-15 in Fig. 2)
which is a listener process that handles all events of state n2. For example, one branch of the Handler sub-
process waits for input on channel sig1 (representing waiting for the reception of sig1 by state n2). Once an
input is received, the Handler sends an exit request to state n2’s active sub-state on the exit′ channel. When the
sub-state sends an acknowledgement on the exack′ channel, the Handler ‘instantiates’ process Sn1 corresponding
to the transition’s target state n1.

When state n2 is entered, the choice of the sub-state to enter next is encoded using sub-process Dispatcher
of process Sn2 (lines 6-8 in Fig. 2). If state n2 is entered through entry point a1 (identified by the argument
passed to parameter enp of the Dispatcher) that is connected to sub-state n4, then the Dispatcher instantiates
Sn4. If, however, state n2 is entered through an entry point that is not explicitly connected to a sub-state, then
the Dispatcher follows state n2’s initial transition and enters the initial sub-state (i.e., instantiates Sn3).

Exit point b1 of state n2 is mapped to a sub-process Bb1 of process Sn2. Subprocess Bb1 executes two steps in
parallel: (1) triggers a stop handler request on channel sh (short for stop handler), and (2) instantiates process
Sn1 corresponding to the target state n1 of the transition leaving the exit point.

3 Background

We briefly overview the DSLTrans model transformation language, the property prover we built for verifying
DSLTrans transformations, and properties that are provable using our prover.

3.1 The DSLTrans Model Transformation Language

DSLTrans [BLA+11] is a graphical model transformation language that is Turing incomplete, i.e., DSLTrans
can not specify unbounded loops. Transformations built using DSLTrans are confluent and terminating by
construction. In DSLTrans, a transformation is composed of a set of ordered layers that are executed sequentially.
A layer contains one or more transformation rules that execute in a non-deterministic order but produce a
deterministic result. Each rule is a pair (MatchModel, ApplyModel) where the MatchModel/ApplyModel is a
pattern of source/target metamodel elements (called match/apply elements in DSLTrans). Match elements can
be of two types: Any match elements are bound to all matching instances in the input model, and Exists match
elements are bound to only one matching instance in the input model.

Fig. 3 shows an example of a DSLTrans rule (called ‘State2ProcDef’) from the first layer of the UML-RT-to-
Kiltera transformation. The MatchModel of the ‘State2ProcDef’ rule has a ‘State’ element of type Any from
the UML-RT metamodel and the ApplyModel has one ‘ProcDef’ element and three ‘Name’ elements from the
Kiltera metamodel. This means that every ‘State’ input model element will be transformed into a ‘ProcDef’
output model element connected to three ‘Name’ elements (with literals exack, exit, and enp). The attribute
name of the ‘ProcDef’ element is the concatenation of S and the name of the State element in the MatchModel.
When a DSLTrans rule executes, traceability links are created between each element in the rule’s MatchModel and
each element in the ApplyModel. These keep track of which output elements came from which input elements.

Rule ‘MapBasicStateNoTrans’ in Fig. 4 shows three additional DSLTrans constructs: attribute conditions on
match elements, free variables, and backward links. Attribute conditions on match elements (e.g., the conditions
on the attributes ‘isComposite’ and ‘hasOutgoingTransitions’ of the ‘State’ match element in Fig. 4) act as a
filter on the matching process, where only ‘State’ elements fulfilling these attribute conditions are matched.
DSLTrans uses free variables and backward links to allow a rule to refer to a specific element that has already
been created in a previous layer.

The two rules in Figs. 3 and 4 show an example of how free variables and backward links are used, where (i)
both rules have a free variable with a value of ‘procdef’ in the apply element ‘ProcDef’, and (ii) rule ‘MapBasic-
StateNoTrans’ has a backward link appearing as a vertical dashed line between the ‘ProcDef’ apply element and
the ‘State’ match element. The first occurrence of the free variable ‘procdef’ (without a backward link) in rule
‘State2ProcDef’ (Fig. 3) of the first transformation layer binds the ‘procdef’ variable to the ‘ProcDef’ element
generated by the rule. Any occurrences of the free variable ‘procdef’ in successive layers with backward links (e.g.,
in rule ‘MapBasicStateNoTrans’ of the second transformation layer shown in Fig. 4) matches only previously
generated ‘ProcDef’ elements that have been bound to the same free variable ‘procdef’. Thus, rules with apply
elements that are not connected by backward links (e.g., ‘ProcDef’ element of rule ‘State2ProcDef’ in Fig 3)

MatchModel

State

ApplyModel

ProcDef

State2ProcDef

name =`S + State.name
freeVar = procdef Name

literal=`exit Name

literal=`enp

Name

literal=`exack

channelNames

channelNames

Type=Any

Figure 3: ‘State2ProcDef’ rule from layer 1 of the UML-
RT-to-Kiltera transformation.

MatchModel

State

ApplyModel

ProcDef

MapBasicStateNoTrans

freeVar = procdef
p

Null

isComposite=`false'
hasOutgoingTransitions = `false
Type=Any

Figure 4: ‘MapBasicStateNoTrans’ rule from layer 2 of
the UML-RT-to-Kiltera transformation.

Layer Rule Name Input Types Output Types

1 State2ProcDef State ProcDef, Name

2

MapBasicStateNoTrans State ProcDef, Null

MapBasicState State ProcDef, Listen, ListenBranch, Trigger

MapCompositeState State ProcDef, LocalDef, New, Par, Inst, Name

3

ExitPoint2ProcDef State, ExitPoint LocalDef, ProcDef, Name, Par, Trigger

State2Handler State LocalDef, ProcDef, Name, Listen, Listen-
Branch, Null, Seq, Trigger

State2Dispatcher State, Transition, EntryPoint, StateMacine LocalDef, ProcDef, Name, ConditionSet, Inst

4

Trans2InstSIB Transition, Vertex, StateMachine, SIBLING0 Inst, Name

Trans2InstOUT Transition, StateMachine, Vertex, OUT2 Inst, Name

Trans2Inst State, Transition, EntryPoint, StateMacine,
IN1

Inst, Name

5

Trans2ListenBranch State, Transition, Trigger, Signal Listen, ListenBranch, Inst

MapExitWithTrans ExitPoint, Transition Par, Inst

Trans2HListenBranch State, Transition, Vertex, StateMachine, Trig-
ger, Signal

Listen, ListenBranch, Seq, Trigger, Inst

MapStatesINtrans State, Transition, IN1, Vertex ConditionSet, ConditionBranch, Expr, Inst

6 MapNesting State LocalDef, ProcDef

Table 2: The rules in each layer of the UML-RT-to-Kiltera transformation and their input and output types

create output elements of the same type each time the MatchModel of the rule is found in the input. However,
apply elements that are connected by backward links (e.g., ‘ProcDef’ element of rule ‘MapBasicStateNoTrans’
in Fig 4) are used to match an element that has been previously created.

3.2 DSLTrans Implementation of the UML-RT-to-Kiltera Transformation

Table 2 summarizes the rules in each layer of the transformation, and the input/output types that are
mapped/created by each rule. The complete DSLTrans implementation can be found in [Sel15].

3.3 DSLTrans Symbolic Model Transformation Property Prover

Fig. 5 demonstrates the architecture of our property prover [SLC+14], now called SyVOLT. Our prover takes
four inputs: the DSLTrans transformation of interest, the transformation’s source and target metamodels, and
the property to verify. Verification is then carried out in two steps, as shown in Fig. 5.

In the first phase, the prover generates the set of path conditions representing all possible symbolic executions
of the input transformation. Each path condition is generated by accumulating a possible combination of rules
that can be triggered by some input model. We refer to the accumulated MatchModels (or ApplyModels) of
all the rules in a path condition as the path condition’s match pattern (or apply pattern). The path condition
generation algorithm is explained in detail in [LOV14].

In the second phase, the prover verifies the input property on each path condition generated in the first phase.
The prover renders the property to be either true (if the property holds for each of the generated path conditions)
or false with a counter example (if the property does not hold for at least one path condition). Our property
prover is input-independent [ACL+15], i.e., property verification is performed once for the transformation and
the verification result is guaranteed to hold for the transformation when run on any input model.

3.4 Properties Verifiable Using the Symbolic Model Transformation Property Prover

Three property types can be expressed and verified using our property prover: AtomicContracts, propositional
formulae on AtomicContracts, and rule reachability. For this study we focus only on the first two property types.

An AtomicContract is a pair (pre, post) that specifies a property of the form: “if the input model satisfies
the precondition pre, then the output model should satisfy the postcondition post”. A (pre- or) postcondition is
a constraint on the (input or) output model of the transformation in the form of a structural relation between

Figure 5: The architecture of our symbolic model transformation property prover.

Precondition

Postcondition

AC1

ProcDef ProcDef
def

State Statestates

isComposite=`true

LocalDef
p

Figure 6: AtomicContract AC1 used to express prop-
erty P1.

Precondition

Postcondition

Procp

AC3

Precondition

Postcondition

Par

AC2

freeVar = PAR

Par

freeVar = PAR
Proc

p

Figure 7: AtomicContracts AC2 and AC3 used to ex-
press multiplicity invariant M1 as AC2 =⇒ AC3.

(input or) output model elements. Pre- and postconditions are expressed using the same constructs as rules
(described in Section 3.1). Postconditions may also have traceability links to link postcondition elements to
precondition elements. Traceability links in postconditions signify that the property will only match an output
model element that was previously created from (and hence, linked to) the input model element.

Fig. 6 demonstrates an AtomicContract AC1 used to express a property (referred to as P1) of the UML-
RT-to-Kiltera transformation. AC1 (Fig. 6) is interpreted as: “two nested States in the input will always be
transformed to two nested ProcDef s in the output”. Using three traceability links in Fig. 6 (appearing as
three vertical, dashed lines) mandates that AC1 will only match ProcDef and LocalDef elements that were
previously created from State elements. Our property prover should prove that AC1 will always hold for the
UML-RT-to-Kiltera transformation.

AtomicConstracts can be composed using standard propositional connectives. For instance, the implication
‘AC2 =⇒ AC3’ in (Fig. 7) captures the ‘2..*’ multiplicity invariant (referred to as M1)1: In the output, every
Par element (i.e., a parallel composition) is associated with two or more Proc elements (i.e., processes) through
the association p. More precisely, if an element of type ‘Par’ (referred to as variable ‘PAR’) is generated in the
output (again as variable ‘PAR’) in AC2, then this element must be connected to at least two ‘Proc’ elements.

4 Testing and Verification of the UML-RT-to-Kiltera Model Transformation

We begin by briefly describing how the transformation was tested during its development (Section 4.1). We then
identify some relevant properties that the transformation should satisfy to be considered correct (Section 4.2).
The application of our property prover to the transformation then follows (Section 4.3).

4.1 Testing

The transformation was extensively unit tested using the following process: Each time a rule was created,
appropriate input models to test that rule were created depending on the complexity of the rule. If the rule
produced the expected output, development would proceed with the next rule; otherwise, the rule would be
debugged. In total, the transformation was tested on 25 different input models, none of which revealed any bugs.

4.2 Properties of Interest

We divide the desired properties of the UML-RT-to-Kiltera transformation into four categories: pattern contracts,
multiplicity invariants, syntactic invariants, and rule reachability. Contracts are properties that relate elements
of the source and target metamodels, and are expressed using AtomicContracts. Invariants are properties defined
on elements of the target metamodel only, and are expressed using propositional formulae of AtomicContracts.
We summarize the four property categories and we demonstrate how exemplar properties from the four categories
are formulated in our prover. The property categories are described in detail in [Sel15].

Pattern contracts require that if a certain pattern of elements exists in the input model, then a corresponding
pattern of elements exists in the output model. For example, pattern contract P1 (Section 3.4, Fig. 6) ensures
that “two nested States in the input will always be transformed to two nested ProcDef s in the output”.

1Note that the two AtomicContracts in Fig. 7 have empty preconditions meaning that they will match on any input model.

Precondition

Postcondition

AC5

Precondition

Postcondition

Inst

AC4

freeVar = INST
name=`Dispatcher

Inst

freeVar = INST
name=`Dispatcher

ProcDef

name=`Dispatcher

Figure 8: AtomicContracts AC4 and AC5 that are used to express a syntactic invariant as AC4 =⇒ AC5.

Multiplicity invariants ensure that the transformation does not produce an output that violates the multiplic-
ities in the target Kiltera metamodel. For example, multiplicity invariant M1 (discussed in Section 3.4, Fig. 7)
ensures that each output Par element is associated to two or more Proc elements through the p association.

Syntactic invariants ensure that the generated Kiltera output is well-formed with respect to Kiltera’s syntax.
An example of a syntactic invariant (referred to as S1) ensures that if a process named Dispatcher is instantiated,
then a process named Dispatcher is also defined. Using the AtomicContracts in Fig. 8, S1 can be expressed as
AC4 =⇒ AC5. The former propositional formula can be interpreted as “If the output has an Inst element named
Dispatcher (AC4), then the output must have the same Inst element accompanied with a ProcDef element named
Dispatcher (AC5)”. The free variable INST in Fig. 8 mandates that if AC4 holds for a specific Inst element,
then AC5 should also hold for the same Inst element.

Rule reachability checks whether a specific rule can be triggered in any path condition of the transformation.
A rule that is not reachable is said to be a dead rule and indicates a transformation bug that needs to be fixed.

We defined and formulated 11 multiplicity invariants, 3 syntactic invariants, 5 pattern contracts, and 15 rule
reachability checks (for each of the 15 rules summarized in Table 2).

4.3 Verification

We used our property prover to verify these properties for the UML-RT-to-Kiltera transformation.

4.3.1 Performance

The first phase of the verification, the generation of the path constraints (Figure 5), completed in less than 14
seconds2 and resulted in 57 different path conditions, i.e., 57 different feasible sequences of rule applications.

In the second phase of the verification, the path conditions are checked to see whether or not they satisfy the
property input. For properties P1, M1, and S1 described in Section 4.2, this check completed in 12.72 secs,
1.59 secs, and 5.5 secs, respectively. Overall, none of the 11 multiplicity invariants took more than 2 secs to
check, while the verification of the 5 pattern contracts took between 3 and 22 secs. The check of two syntactic
invariants completed in less than 6 secs, while the third required 241 secs; the reason is that it is by far the most
complex property, with 20 elements distributed over 4 atomic contracts.

4.3.2 Bugs found

To our surprise, SyVOLT determined that the transformation was not correct, because it did not guarantee
properties M1 and S1 (Figs. 7 and 8). More precisely, there are input models for which the transformation
generates: (i) an output in which a Par is associated to fewer than two Procs (violating M1), and (ii) an output
where an Inst named Dispatcher is created but a corresponding ProcDef named Dispatcher is not created
(violating S1). After examining the generated counter examples, we determined that both bugs were caused
by two rules R1 and R2 in different layers that were not guaranteed to be “applied together”, i.e., that it was
possible that R1 was applied, but not R2.

Neither of these bugs had been exposed by our rule testing while developing the transformation, and when we
went back to the the original UML-RT-to-Kiltera transformation in ATL presented in [Pae12], it too, although
also having been tested quite thoroughly, turned out to also contain the exact same two bugs.

An investigation of the source of these bugs revealed the following:

2All timings were done on a 2.8 GHz AMD Opteron processor running Ubuntu Linux.

MatchModel

ApplyModel

ExitPoint2ProcDef

def

ProcDef

State

isComposite=`true
Type=Any

ExitPoint

Type=Any
exitPoints

LocalDef

freeVar = localdefcompstate

name=`B +ExitPoint.name

Name

literal=`sh_in

Trigger

channel=`sh_in

Par

freeVar=parexitpoint

p p

Figure 9: Rule ‘ExitPoint2ProcDef’ in layer 3 of buggy
transformation.

MatchModel

ApplyModel

MapExitWithT rans

ExitPoint

Type=Any
outgoingTransitions

Par

freeVar = parexitpoint p

Transition

Type=Exists

Inst

freeVar = instfortrans

Figure 10: Rule ‘MapExitWithTrans’ in layer 5 of
buggy transformation.

Bug 1: Rule ‘ExitPoint2ProcDef’ in layer 3 (Fig. 9) and rule ‘MapExitWithTrans’ in layer 5 (Fig. 10) are
supposed to generate the two Proc elements belonging to a Par element. First, rule ‘ExitPoint2ProcDef’ (Fig. 9)
generates a Par element associated to a Trigger element (which extends Proc). Then, rule ‘MapExitWithTrans’
(Fig. 10) associates an Inst element (i.e., a second Proc element) with the same Par element previously generated
by rule ‘ExitPoint2ProcDef’ in layer 3, as shown by the free variable ‘parexitpoint’. However, execution of rule
‘ExitPoint2ProcDef’ does not mandate execution of rule ‘MapExitWithTrans’ : e.g., a composite State in the
input model with an ExitPoint that has no outgoing Transitions will cause rule ‘ExitPoint2ProcDef’ (layer 3)
to execute but not rule ‘MapExitWithTrans’ in layer 5, resulting in an output containing a Par associated with
only one Proc, violating M1.

Bug 2: Rule ‘MapCompositeState’ in layer 2 generates an Inst named ‘Dispatcher’ and rule ‘State2Dispatcher’
in layer 3 generates a ProcDef named ‘Dispatcher’. Rule ‘State2Dispatcher’ matches composite States with a
positive application condition, or a PAC (specified using Exists match elements, described in Section 3.1). On
the other hand, rule ‘MapCompositeState’ matches any composite State, without specifying a PAC. Thus, rule
‘MapCompositeState’ will match some composite States that are not matched by rule ‘State2Dispatcher’ (if they
do not satisfy the PAC), resulting in an output containing an Inst named Dispatcher, but not a ProcDef named
Dispatcher (violating SS2).

4.3.3 Fixing the bugs

For the first bug, we merged the two rules ‘ExitPoint2ProcDef’ and ‘MapExitWithTrans’ into a new rule in layer
5. For the second bug, the MatchModel of the rule ‘MapCompositeState’ (layer 2) was updated to include the
PAC (specified as Exists match elements) of rule ‘State2Dispatcher’ (layer 3), to guarantee that the two rules
necessarily execute together. Due to page limitations, the new rules are not shown here (see [Sel15] for details).
After these changes, our prover proved the revised transformation correct with respect to all 11 properties.

5 Observations

Our case study allowed us to make the following observations:
O1: “Bugs not triggered by a test input will not be found”: The limits of testing are well-known,

of course. However, the unwarranted trust we subconsciously placed in our tests surprised us and highlights the
value of formal verification.

O2: “Make sure test inputs cover the input metamodel”: Testing proved insufficient, because the
metamodel was assumed to be more restrictive than it actually was, i.e., the input models produced by the
prover as counter examples had been assumed to be malformed, but proved to be permissible state machines.

O3: “Effective input-independent verification of graph-based model transformations is possi-
ble”: While the performance of an earlier version of our prover [SLC+14] was already quite good, the performance
of SyVOLT observed in this non-trivial case study is encouraging and provides additional, albeit still anecdotal,
evidence that the formal verification of transformations with respect all possible inputs is feasible and practical.

O4: “Refactoring is hard”: The first bug was introduced by a refactoring step that broke a single rule into
the two rules ’ExitPoint2ProcDef’ and ’MapExitWithTrans’ described in the previous section. Unfortunately,

the refactoring did not preserve correctness and was undone to fix the bug.
O5: “Input/output-level properties” vs “rule-level properties”: The bugs suggested to us that

it is useful to distinguish two different kinds of properties: 1) input/output-level properties, i.e., pre- and post-
condition-type properties that describe the desired shape of the output (e.g., all properties in Section 4.2); and (2)
rule-level properties, i.e., properties that impose restrictions on the way the rules are applied in a transformation
execution (e.g., “Rule R1 fires in an execution if and only if rule R2 also fires”). Input/output-level properties
capture user-level requirements, while rule-level properties capture when the rules in an implementation work
together properly to guarantee the requirements. The relationship is akin to standard pre- and post-conditions
for programs (i.e., “contracts”) and, e.g., behavioural interface specification and API method usage rules such
as “method close should only be invoked after method open”. The benefit of rule-level properties thus is that
they, in some sense, describe how the transformation works and may provide necessary conditions useful for
transformation development and documentation.

O6: Towards a development methodology for provably correct DSLTrans transformations: A
hallmark of DSLTrans is that transformations are structured in sequentially executed layers L1, . . . , Ln. The
property language supported by SyVOLT is perfectly suited to capture the purpose of each layer Li+1 through
a pair of formulas Fi and Fi+1 capturing input/output-level properties, such that the rules in Li+1 are deemed
correct, if they transform input satisfying the pre-condition Fi into output satisfying the post-condition Fi+1.
Development of the rules in layer Li+1 would go hand-in-hand with the development of the formulas Fi+1 with
the iterative use of the prover until (i) the rules are correct with respect to Fi+1, and (ii) Fi+1 is considered
strong enough to allow the construction of Li+2 and a suitable Fi+2. Failure to establish Fi+1 may force the
developer to revisit a previous level Lj (j ≤ i) and revise Fj and, possibly, also the rules in Lj .

6 Related Work

This paper presents results from our ongoing work on verifying graph-based model transformations. While an
earlier version of the prover has been described before [SLC+14], the UML-RT-to-Kiltera case study and our
experience verifying it is new to this paper.

The use of contracts for the verification has already been proposed in [EGdLW+13, CBBD09]. In contrast to
our work, only input-dependent verification is supported. Input-independent verification has been realized in,
e.g., [SCGDL14, CCR+10, BECG12]; of these, the first two approaches allow analysis only with respect to specific
properties, while the third approach performed markedly worse than our approach in a comparison [SBC+13].
More information on approaches to verifying model transformations can be found in [ACL+15].

Tools to evaluate the coverage provided by a set of input models with respect to a given metamodel have been
proposed [FBMLT09] and may have revealed the limitations of our initial tests. Recently it has been suggested
that even stronger coverage is required [GS15] than we suggest in O2.

Tools that allow what we call “rule-level properties” include Groove [GdMR+12] and AGG [Tae03]. AGG
supports a “critical-pair analysis” which checks if transformation rules are confluent. Groove’s analysis is more
comprehensive and supports a complete exploration of the state space of the transformation using CTL formulas.

The advantages of modularizing transformations in a way similar to DSLTrans’ sequential layering (O6) has
also been discussed by both [CM09] and [LKR13].

7 Conclusion and Future Work

The case study has been useful in the following ways: First, it has reinforced some already widely held, but
unproven, beliefs (Observations O1, O2, and O4). It provides some additional evidence of the promise of our
approach to model transformation verification (Observation O3). It provides us with a stimulus to think more
about different kinds of properties. Rules form the building blocks transformations are made of, and occupy a
higher level of abstraction than, say, statements in programming languages, while also being more uniform in
their effect and role than, say, methods and procedures in programming languages. This may mean that the
development of rule-based transformation systems in general and graph-based model transformation systems in
particular may benefit greatly from the kind of rule-level properties discussed in Observation O4. Finally, the
case study has given us new ideas on how to evolve our work into a transformation system providing suitable
tool support for rigorous development of correct DSLTrans transformations (Observation O5). In particular,
support for the expression and verification of properties of individual layers and rule-level properties will be a
focus (Observation O6). Encouragingly, it should be fairly straight-forward to extend our prover to support
these additions.

References

[ACL+15] M. Amrani, B. Combemale, L. Lúcio, G.M.K. Selim, J. Dingel, Y. Le Traon, H. Vangheluwe,
and J.R. Cordy. Formal Verification Techniques for Model Transformations: A Tridimensional
Classification. JOT, 13(3):1–43, 2015.

[BECG12] F. Buettner, M. Egea, J. Cabot, and M Gogolla. Verification of ATL Transformations Using
Transformation Models and Model Finders. In ICFEM 2012, pages 198–213, 2012.

[BLA+11] B. Barroca, L. Lúcio, V. Amaral, R. Félix, and V. Sousa. DSLTrans: A Turing Incomplete
Transformation Language. In SLE 2011, pages 296–305. 2011.

[CBBD09] E. Cariou, N. Belloir, F. Barbier, and N. Djemam. Automated verification of model transforma-
tions based on visual contracts. ECEASST, 24, 2009.

[CCR+10] J. Cabot, Clarisó, Guerra R., E., and J. de Lara. Verification and validation of declarative model-
to-model transformations through invariants. JSS, 83(2):283–302, 2010.

[CM09] J. Cuadrado and J. Molina. Modularisation of Model Transformations Through a Phasing Mech-
anism. SoSyM, 8(3):325–345, 2009.

[EGdLW+13] E. E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck,
and W. Schwinger. Automated verification of model transformations based on visual contracts.
Autom. Softw. Eng., 10(1):5–46, 2013.

[FBMLT09] F. Fleurey, B. Baudry, P.-A. Muller, and Y. Le Traon. Qualifying Input Test Data for Model
Transformations. SoSyM, 8(2):185–203, 2009.

[Fou] Eclipse Foundation. Papyrus for Real Time (Papyrus-RT).
https://projects.eclipse.org/projects/modeling.papyrus-rt, 2015.

[GdMR+12] A.H. Ghamarian, M.J. de Mol, A. Rensink, E. Zambon, and M.V Zimakova. Modelling and
Analysis using GROOVE. Int. J. on Softw. Tools for Technology Transfer, 14(1):15–40, 2012.

[GS15] E. Guerra and M. Soeken. Specification-driven Model Transformation Testing. SoSyM, 14(2):623–
644, 2015.

[IBM] IBM. IBM Rational Software Architect Real-time Edition, version 8.0. 2015.

[LAD+15] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. Selim, E. Syriani, and M. Wimmer.
Model Transformation Intents and Their Properties. SoSyM, 2015. To appear.

[LKR13] K. Lano and S. Kolahdouz-Rahimi. Constraint-based Specification of Model Transformations.
JSS, 86(2):412–436, 2013.

[LOV14] L. Lúcio, B. Oakes, and H. Vangheluwe. A Technique for Symbolically Verifying Properties of
Graph-Based Model Transformations. Technical Report SOCS-TR-2014.1, McGill Univ., 2014.

[Pae12] E. Paen. Measuring Incrementally Developed Model Transformations Using Change Metrics.
Master’s thesis, School of Computing, Queen’s University, 2012. MSc thesis.

[PD10a] E. Posse and J. Dingel. Kiltera: A Language for Timed, Event-Driven, Mobile and Distributed
Simulation. In DS-RT 2010, pages 87–96, 2010.

[PD10b] E. Posse and J. Dingel. Theory and Implementation of a Real-Time Extension to the π-Calculus.
In Formal Techniques for Distributed Systems, pages 125–139. 2010.

[PD14] E. Posse and J. Dingel. An Executable Formal Semantics for UML-RT. SoSyM, pages 1–39, 2014.

[SBC+13] G.M.K. Selim, F. Buettner, J.R. Cordy, J. Dingel, and S. Wang. Automated Verification of Model
Transformations in the Automotive Industry. In MODELS 2013, pages 690–706, 2013.

[SCGDL14] J. Sanchez Cuadrado, E. Guerra, and J. De Lara. Uncovering errors in atl model transformations
using static analysis and constraint solving. In ISSRE’14, pages 34–44, 2014.

[Sel98] B. Selic. Using UML for Modeling Complex Real-Time Systems. In LCTES, pages 250–260. 1998.

[Sel15] G.M.K. Selim. Formal Verification of Graph-Based Model Transformations. PhD thesis, School
of Computing, Queen’s University, 2015.

[SLC+14] G.M.K. Selim, L. Lúcio, J. R. Cordy, J. Dingel, and B. J. Oakes. Specification and Verification of
Graph-Based Model Transformation Properties. In ICGT 2014, pages 113–129, 2014.

[Tae03] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Validation of Soft-
ware. In AGTIVE 2003, pages 446–453, 2003.

